No End of Programming J

Jirgen Dollner

Hasso-Plattner-Institute

June 4, 2025

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 1/17



Introduction

@ Generative Al is fundamentally changing the way software has been
developed since the 1950s.

@ This change is so significant that some are even suggesting that the
current model of software development is coming to an end.

@ What does it mean in the long term when machines program
machines?

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 2/17



Introduction

@ "Programming will be obsolete. | believe the conventional idea of
'writing a program’ is headed for extinction, and indeed, for all but
very specialized applications, most software, as we know it, will be
replaced by Al systems that are trained rather than programmed.

@ 7:9

THE END OF PROGRAMMING :

By Matt Welsh

T — (—*—w§

_ 4 —
=,
January 2023 °
gFommunications of the ACM
>

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 3/17



Disruptive Innovations

222N

Scriptorium Era: The illustration shows work in a scriptorium using the example of the ‘Miracles de Notre Dame’ (1462) for
manual book production.

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 4/17



Disruptive Innovation

#/////////////////////////
]

T e
b —

Gutenberg Bookpress: The illustration shows Gutenberg's first book press, which made mass production of printed information
possible for the first time. This triggered an unimaginable boom in business and science.

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 5/17



Disruptive Innovations

%1P5-Adobe-3.0

%%Creator: Wolfram Mathematica 11.0.1.8 for Microsoft Windows (32-bit)

%%CreationDate: Fri Mar 30 14:17:02 2018

%%Pages: 7

%%DocumentData: Clean7Bit

%%Languagelevel: 3

%%DocumentMedia: A4 595 842 @ () ()

%%BoundingBox: 54 33 539 812

%%EndComments

%%BeginProlog

/languagelevel where

{ pop languagelevel } { 1 } ifelse

3 1t { /Helvetica findfont 12 scalefont setfont 50 500 moveto
(This print job requires a PostScript Language Level 3 printer.) show
showpage quit } if

/q { gsave } bind def

/Q { grestore } bind def

/em { 6 array astore concat } bind def

/v { setlinewidth } bind def
/3 { setlinecap } bind def
/3 { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def

/m { moveto } bind def

/1 { lineto } bind def

/c { curveto } bind def

/h { closepath } bind def

/re { exch dup neg 3 1 roll 5 3 roll moveto @ rlineto
@ exch rlineto @ rlineto closepath } bind def
/5 { stroke } bind def

Postscript and Digital Printing: PostScript as a universal description language for page-structured 2D information (John
Warnock, Adobe, 1982) — silent omnipresence. PostScript and PDF democratized access to information, removed technical
barriers, and ensured that documents could be created, shared, and printed anywhere in,the world with-absolute fidelity:

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 6/17



Disruptive Innovations

o Initially limited performance compared to established solutions, but
foreseeably cheaper or simpler

@ Scaling and mass adoption as the technology matures

@ Radical change to existing processes, products or technologies

@ Development of new target groups and markets that were not
previously served

@ Long-term, far-reaching displacement of existing markets and society

(e.g., democratization of knowledge)

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 7/17



Jiirgen Déllner (Hasso-Plattner-Institute)

Naturalness of Software

On the Naturalness of Software

Abram Hindle, Earl Barr, Mark Gabel, Zhendong Su, Prem Devanbu
devanbu@cs.ucdavis.edu

Unpublished version of ICSE 2012 paper, with expanded future work section
Enjoy! Comments Welcome.

Abstract—Natural languages like English are rich, complex,
and powerful. The highly creative and graceful use of languages
like English and Tamil, by masters like Shakespeare and Avvai-
yar, can certainly delight and inspire. But in practice, given cog-
nitive constraints and the exigencies of daily life, most human
utterances are far simpler and much more repetitive and pre-
dictable. In fact, these utterances can be very usefully modeled
using modern statistical methods. This fact has led to the phe-
nomenal success of statisti pp hes to speech r iti
natural 1 tr i ing, and text min-
ing and comprehension.

‘We begin with the conjecture that most software is also natu-
ral, in the sense that it is created by humans at work, with all
the attendant constraints and limitations—and thus, like natu-
ral language, it is also likely to be repetitive and predictable. We
then proceed to ask whether a) code can be usefully modeled by
statistical language models and b) such models can be leveraged
to support software engineers. Using the widely adopted n-gram
model, we provide empirical evidence supportive of a positive
answer to both these questions. We show that code is also very
repetitive, and in fact even more so than natural languages. As
an example use of the model, we have developed a simple code
completion engine for Java that, despite its simplicity, already
improves Eclipse’s completion capability. We conclude the pa-
per by laying out a vision for future research in this area.

No End of Programming

what people actually write or say. In the 1980’s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple lan-
guages', along with the computational muscle (CPU speed,
primary and secondary storage) to estimate robust statistical
models over very large data sets has led to stunning progress
and widely-available practical applications, such as statisti-
cal translation used by t ranslate.google . com.” We argue
that an essential fact underlying this modern, exciting phase
of NLP is this: natural language may be complex and admit a
great wealth of expression, but what people write and say is
largely regular and predictable.

Our central hypothesis is that the same argument applies to
software:

Programming languages, in theory, are complex, flex-
ible and powerful, but the programs that real people
actually write are mostly simple and rather repetitive,
and thus they have usefully predictable statistical proper-
ties that can he

d in_statistical I, madels

June 4, 2025

8/17



Naturalness of Software

Programming languages, in theory, are complex, flex-
ible and powerful, but the programs that real people
actually write are mostly simple and rather repetitive,
and thus they have usefully predictable statistical proper-
ties that can be captured in statistical language models
and leveraged for software engineering tasks.

@ Statistical regularities = predictability of code

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 9/17



Generative Al

Programming Languages are Languages
o Well-defined syntax and semantics
e Known, common programming patterns
o Limited vocabularies
e Enhanced learning due to coding standards and conventions

LLMs Trained on Code

e Exposure to vast codebases allows LLMs to learn and understand
source codes, APls, frameworks, etc.

e Complementary information steams from topics over programming
(e.g., stackoverflow, ticket systems)

e Structured code aligns with LLM sequence modeling

o Al models learn from both code and natural language, enhancing
versatility

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 10/17



Generative Al: Impact on Software Development

Shift from Coding to Solution Design

o Generative Al shifts focus on specifying what a solution should do, not
how to implement it.

e Software developers spend a large part of time on design, coding,
debugging, redesign, and testing code as well as on maintenance,
refactoring, etc.
= Generative Al automates large parts of these activities.
= Time required for coding will ultimately become insignificant.

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 11/17



Generative Al: Impact on Software Development

Vision: Enabling Real-Time Software Development On-Demand

o If software can be automatically, precisely generated within a controlled
environment and a given context, it can be generated on demand, i.e.,
just-in-time.

e For example, coding, testing, deployment and execution of software
would only be performed once, exactly when a service receives a
specific request.

o It will be no longer necessary to develop a general, all-encompassing
software system in advance when a specific software system could be
derived at any time.

o Example: Exploratory data analysis by ChatGPT.

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 12/17



Excursion: Self-Debugging

Code generation
> [{}

Code
ChatGPT
Self-Debugging Code execution
Feedback

Y. Li, J. Shi, Z. Zhang: An Approach for Rapid Source Code Development Based on ChatGPT and Prompt Engineering, IEEE
Access, 2024

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 13 /17



Excursion: Prompt Engineering

. \
' \
' ' B ettt Dt -
' : ; 3
' ' ' 1
' ' ' N
' L 1 H
' . N ' '
H | % ' Comparison Metrics !
i Wite...n... ' . > ! Execution Metrics !
y Example ... ' ChatGPT y ' '
' ' 3 ' Ablation Experiment '
! ' (GPT-3.5) ! i H
i H ' H Human Evaluation !
' ' ! '
! ! LLMs : ChatGPT ; i !
1 i Y e mm—— \ Code Evaluation .

\. Prompt Builder

Y. Li, J. Shi, Z. Zhang: An Approach for Rapid Source Code Development Based on ChatGPT and Prompt Engineering, IEEE
Access, 2024

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 14 /17



Excursion: Prompt Engineering

Generative Al: No Crystal Ball
@ Unspecified aspects become entropy, the solver must guess or default.

@ Under-Specification
o Ambiguous goals, missing constraints, hidden assumptions
o Combinatorial explosion of candidate programs; unpredictable behavior

o Over-Specification
o Premature design decisions, irrelevant or excessive constraints
e Narrows to one brittle solution; blocks optimization or innovation

@ Both extremes inflate risks and costs; the goal is a just-enough
specification that leads to a stable, correct implementation.

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 15 /17



No End of Programming

Selected Research Topics

Prompt Management and prompt engineering
Agent-based software development mechanics
Ensuring deterministic code generation

Role of high-level system architecture specification
Library design and implementation

API design towards LLMs

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 16 /17



Contact Information:

e Prof. Dr. rer. nat. habil. Jirgen Dollner
Hasso-Plattner-Institute for Digial Engineering
University of Potsdam, Germany

o Email: doellner@hpi.de

o Website: https://www.hpi.de/doellner

Jiirgen Déllner (Hasso-Plattner-Institute) No End of Programming June 4, 2025 17 /17


mailto:doellner@hpi.de
https://www.hpi.de/doellner

