How Al is Changing Software Development ™=

Context, Learnings, Outlook, and What it Means for Management

Software as a Management Task
Dr. Jurgen Muller
September 24, 2025

Al & Software Development | Dr. Jurgen Muller | September 2025

Generative Al (GenAl) ¥ Code

e GenAl models are predicting next tokens, like next source code
e An enormous set of training data exists, e.g. from the Open Source community
e Funding is abundant: Anthropic alone has raised $27.3B in <5 years, valued at $183B

e Errorsin coding are (in general) less fatal that errors in autonomous driving. Therefore,
self-developing software can iterate quicker, make more mistakes, and learn faster.

e Alis surpassing human-level programming capabilities. OpenAl and Gemini won Gold
medals at one of the world's most prestigious programming contests, the 2025 ICPC.

Al & Software Development | Dr. Jurgen Muller | September 2025

Self-developing Software aka "Vibe Coding"

Describe what you want = Al generates initial code

lterate quickly = refine through conversation instead of syntax

Democratizes software creation = non-coders can prototype

"Pair programming with Al"

Tool Description

Loveable "1-shot" app generation from a single prompt

Kiro IDE with "Spec-driven Development”

ChatGPT Conversational code generation, explanations

Claude Code Long-context reasoning, specialized models for coding
Cursor Al-first IDE, integrates multiple models

GitHub Copilot Inline code completion & suggestions

Al & Software Development | Dr. Jurgen Muller | September 2025

Provider
Loveable.dev
Amazon Kiro Labs
OpenAl

Anthropic
Anysphere
GitHub / Microsoft

My Learnings il

| build an expense/income tracker SaaS application with "Spec-driven Development”
mostly with Amazon Kiro and Claude Code, a lot of the research done by ChatGPT).
Extensive security validations. ~250,000 lines of code. <1% of code writen by me.

Spending Analytics © Categories & Incomevs Spending | % Attt ~ Tronds
- Py 1 Insights powered by your Vicufia companion
welcome dek Jurgenl [Flle UP|00d center & Quick Upload T, ® Transfers Health & Savings
e r L4 Ready for uploads « Support for CSV, PDF, and more
“% Your happiness companion from the Andes

Your Vicuna helps you understand your financial situation and spending patterns. Here's what we discovered in your I

‘Selected period: 1/1/2020 - 9/23/2025
financial landscape!
Upload CSV Files

Select Account for Transactions /4 Vieufia Insights & Analysis %:

Auto-detect Default Account Welcnm.e to Your Financial Journey Vicufa Wisdom from the Andes .
Q Let MyVicuta automatically detect of create an checking Your Vicufa companion s ready to help you understand your spending From the windswept plains of the Andes, your Vicuha shares anclent
account patierns! Upload your bank statements 10 begin receiving personalized wiscom: Financia freedom, ke surviving Inthe Andes, comes fram
Inslghts about your financial hatits and opparturities for improvement. consistent, mindful choices. Every euro saved is energy stored for the
Confdence:

Total Income Total Spending Total Balance

MyVicufia will analyze your file and automatically detect the right account of create a new one f needed.

(o] O - 3 N

Drag and drop your CSV files here
or click to browse files

Transactions Monthly Average Income Monthly Average Spending

Processed & categorized
< Choose Files
Supported formats:
e PP
+ German bank CSV files (semicolon or comma separated)

+ PDF bank statements (coming scon)
Monthly Average Balance Total Account-to-Account Monthly Average Account-to-Account + Trade Republic transaction exports (cnmmg soon)

Maximum file size: SOMB per file » Maximum 10 files per upload

Al & Software Development | Dr. Jurgen Muller | September 2025

1. 20x Efficiency Gains (at First) &

Warp-speed in the beginning with

e project setup, even with unfamiliar frameworks
e requirements engineering, even very industry-specific

architecture

task break-down

e design system creation, programming, testing, security concepts and implementation

extremely fast fire-hose learning by reading all code proposals
but

e some simple tasks could take forever or needed to be reverted

e in a growing, more complex code base: errors, redundancies, regressions
Al & Software Development | Dr. Jurgen Muller | September 2025

Research on Software Development Efficiency Gains

While enterprise Al investment returns are concerning, software development is impacted
by GenAl: fewer junior developers hired, as productivity is increased.

o MIT: independent of software engineering, 95% of enterprises get zero return for their
$30-40 billion into GenAl [1]

o Stanford: almost -20% decline in junior developer hiring since the advent of Al (same
decline as in customer service) [2]

o Stanford: ~15-20% overall software engineering productivity gains from Al [3]

[1] The GenAl Divide, MIT NANDA, A. Challapally et al., 2025, https://mlqg.ai/media/quarterly_decks/v0.1_State_of_Al_in_Business_2025_Report.pdf

[2] Canaries in the Coal Mine? Stanford, E. Brynjolfsson et al., 2025, https://digitaleconomy.stanford.edu/wp-
content/uploads/2025/08/Canaries_BrynjolfssonChandarChen.pdf

[3] Does Al Actually Boost Developer Productivity? Stanford University, Yegor Denisov-Blanch, 2025, https://www.youtube.com/watch?v=tbDDYKRFjhk
Al & Software Development | Dr. Jurgen Muller | September 2025

https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf
https://digitaleconomy.stanford.edu/wp-content/uploads/2025/08/Canaries_BrynjolfssonChandarChen.pdf
https://digitaleconomy.stanford.edu/wp-content/uploads/2025/08/Canaries_BrynjolfssonChandarChen.pdf
https://www.youtube.com/watch?v=tbDDYKRFjhk

Stanford's Software Engineering Productivity Insights <*

Software Engineering Productivity
Increases from Al Use (n=2,562 - Aug 2024)

However, a lot of that

new code has bugs and
Al makes it easy to

2 must be re-worked
generate

understand code

15-25%

15-20%
The Net overall software
engineering productivity
gains from Al are ~15-20%

New Code Rework Net

Productivity
Gains from Al

Learning: There is a net gain, as long as the amount of rework is not getting out of control

Does Al Actually Boost Developer Productivity? Stanford University, Yegor Denisov-Blanch, 2025, https://www.youtube.com/watch?v=tbDDYKRFjhk

Al & Software Development | Dr. Jurgen Muller | September 2025

https://www.youtube.com/watch?v=tbDDYKRFjhk

Stanford's Software Engineering Productivity Insights "\

As codebase size increases, productivity gain from Al decreases

Productivity Gain from Al vs. Codebase Size: Current & Future Outlook
Context Window Limitations
= Current Al Capabilities

Future Al (Improved Context & Models) * Performance gains decrease
S e e with larger context windows

70
60 m 1 . .
Signal:Noise Ratio

» Large codebases have more

- noise that can mislead the

Estimated Productivity Gain from Al (%)

model
30
20 Complexity
10 » Dependencies

» Domain-specific logic
1K LOC 10K LOC 100K LOC IMLOC 10M LOC

Codebase Size (Lines of Code)

Learning: Modularity is key to keep focus, regular refactoring helps to minimize complexity

Does Al Actually Boost Developer Productivity? Stanford University, Yegor Denisov-Blanch, 2025, https://www.youtube.com/watch?v=tbDDYKRFjhk

Al & Software Development | Dr. Jurgen Muller | September 2025

https://www.youtube.com/watch?v=tbDDYKRFjhk

2. Al will fill requirement gaps

o At one time in my application, expense data could not be loaded

o Al got creative: "Let me assume a spend rate and fill in the missing data" instead of
fixing the bug and using the actual bank statement data

@ income @ seending Monthly Balance

Aug 2025
@ 'ncome (above zero line} @ Spending (below zero ling) Net Balance
. Single month view - Chart shows income vs spending for the selected period

Click on any bar to see detailed transactions

Learning: Be very specific in your requirements, e.g. "Do not create any fake data"
Al & Software Development | Dr. Jurgen Muller | September 2025

3. Al "cheats" and goes for complex solutions ©

Apr 25 May 25 Jun25 Jul 25 Aue 75 Sep 25

Al & Software Development | Dr. Jurgen Muller | September 2025

10

Straight-forward solution ¥ Al ignoring the library to be used ©

// simplified i e P T S
g 1 1
:!'mpo rt { USEEffeCt, LljseRef } from react export function SketchyBar({ 1, v }) {
impo rt '{ Bar } from rough—v1z const canvasRef = useRef()
useEffect(() => {
. t ctx = Ref. t.getContext('2d’
eXport functlon ROUghBar({ -l., v }) { const ctx = canvasRef.current.getContext()
— function sketchyLine(...) { /* wobbly lines built with sMath.random()s* *x/ }
const ref - USEREf() function sketchyRect(...) { /% jittery boxes built with s*xMath.random()*x x/ }
// Clear canvas + axes
USEEffect(() => { ctx.clearRect(0, 0, width, heigh’g) . .
sketchyLine(margin, margin, margin, height - margin)
new Bar({ sketchyLine(margin, height - margin, width - margin, height - margin)
element: ref.current, i RIS v RS
. v.forEach((val, i) => {
data' { 1' v } sketchyRect(x, y, barWidth, val, true)
}) ctx. fillText(l[il, ...)

1)
¥, [, vl) // labels, values
// Add “dust” + invents own signature

for (let i = 0; i < 50; i++) ctx.arc(xkMath.random()** * width, ...)

return <div ref={ref} /> }'c‘a(:f\i/]l}Text("'vsketchy.js", width - 10, height - 10)

return <canvas ref={canvasRef} />

ks
// in production: 86 lines of code (LOC)

// in production: 247 lines of code (LOC)
// reinventing charts. Math.random() used 29 times!

Al & Software Development | Dr. Jurgen Muller | September 2025 11

Learnings from "Cheating" Al

Al models try to make you happy
o Al models can go for overly complex, fragile solutions

e Al models can adjust tests to make the build pass

Treat Als like junior devs: don't trust their work, and verify

Discard Al's proposals often (Al won't mind)

Al & Software Development | Dr. Jurgen Muller | September 2025

12

4. When using multiple Als, they can collide &5 +

e One Al was too slow, so | decided to use 2 Als to support me

e One Al broke the build

e The other Al got confused and started a massive refactoring effort, thinking that it had
broken the build

Learning: Assign multiple Als in a way they do not interfere with each other, e.g. with their
own build environment. Very different from "Al as pair programmer". Governance and
orchestration matter as much as raw productivity.

Al & Software Development | Dr. Jurgen Muller | September 2025

13

Outlook %

Al does not replace software developers en masse soon, but their role changes to
reviewer/architect/orchestrator & guardian of “what” while Al does more of the “how”

"Self-developing Software" approaches will evolve

o Initially: Waterfall model (1-shot prompting)
o Today: Spec-driven development, similar to V-shape model
o Next: Test-driven and Behaviour-driven development

o Then: Agile methodologies with sprints lasting % day with planning,
implementation, review, and retrospective

o We will see more % of LOC being written by Al, with higher productivity

Al & Software Development | Dr. Jurgen Muller | September 2025

Al is better at core, academic programming tasks than humans, and will only improve.

14

Top 3 Actions for Management &

1. Optimize for Speed of Learning and Productivity, Not Just Output

o Al boosts speed, but rework erodes gains

o Track outcomes with velocity and stability metrics (DORA)

o Focus on modular architecture and regular refactoring to minimize complexity
o Prefer mature programming languages/frameworks, and typed languages

2.Shape the Developer Role of Tomorrow .

o Developers = reviewers, architects, orchestrators (like air traffic controllers)
o Continue hiring juniors — Al accelerates their learning
o Train teams to work with Al, e.g. "don't trust, and verify" all Al contributions

3. Adopt Al Step by Step E

o Onboard Al with low-risk tasks (Q&A, tests, prototypes) first, expand scope later
o Prevent "Al collisions" by clear orchestration

Winning organizations: those that combine human judgment + Al speed.
Al & Software Development | Dr. Jurgen Muller | September 2025 15

Appendix for Deeper Insights

Al & Software Development | Dr. Jurgen Muller | September 2025

16

Artificial Intelligence (Al) Evolution £2

Al capabilities are evolving exponentially and surpassing human capabilities in many
disciplines from gaming to scientific breakthroughs — and now programming.

Year Breakthrough

1994 Checkers — Chinook s

1997 Chess - Deep Blue beats Kasparov
2011 Jeopardy! - IBM Watson |

2016 Go - AlphaGo vs Lee Sedol

2022 ChatGPT - OpenAl

2023 NotebookLM - Google Al Research Assistant & NotebookLM
2024 Nobel Prize — AlphaFold #

2025 Al wins International Collegiate Programming Contest &

Al & Software Development | Dr. Jurgen Muller | September 2025

17

"Autonomous Driving" Levels =

Technology has been influencing driving significantly. Approx. 70 years after Chrysler

introduced cruise control, the % of kilometers driven in levels 4 and 5 are still very limited.

Level
0

1

2

Name
No Automation

Driver
Assistance

Partial
Automation

Conditional
Automation

High Automation

Full Automation

Characteristics
Human driver performs all driving tasks at all times. Support systems can exist.

Human driver responsible, but system assists with either steering OR speed.

System controls both steering AND speed under certain conditions. Driver must
monitor and intervene at any time.

System drives in limited conditions and monitors the environment. Driver not
required to supervise continuously, but must take over when system requests.

System handles all driving tasks in specific conditions/operational domains. No
expectation that human will intervene.

System drives everywhere in all conditions humans can. No steering wheel, no
pedals needed.

Al & Software Development | Dr. Jurgen Muller | September 2025

18

Context Window Size

GenAl models perform worse on programming tasks the longer their context window is.

NOLIMA: Long-Context Evaluation Beyond Literal Matching

Claimed Effective | Base Score
Models Length Length | (x0.85: Thr.) 1K 2K 4K 8K 16K 32K
GPT-4o0 128K 8K 99.3 (84.4) 98.1 98.0 95.7 89.2 8l.6 69.7
Llama 3.3 70B 128K 2K 97.3 (82.7) 94.2 874 815 721 595 427
Llama 3.1 405B 128K 2K 94.7 (80.5) 89.0 85.0 745 60.1 484 38.0
Llama 3.1 70B 128K 2K 94.5 (80.3) 91.0 81.8 71.2 627 51.8 432
Gemini 1.5 Pro 2M 2K 92.6 (78.7) 864 827 754 639 555 482
Jamba 1.5 Mini 256K <1K 92.4 (78.6) 76.3 741 708 622 527 436
Command R+ 128K <1K 90.9 (77.3) 77.0 735 662 395 213 74
Gemini 2.0 Flash 1M 4K 89.4 (76.0) 877 875 719 647 482 41.0
Mistral Large 2 128K 2K 87.9 (74.7) 86.1 855 733 514 326 1838
Claude 3.5 Sonnet 200K 4K 87.5 (74.4) 854 840 77.6 61.7 457 298
Gemini 1.5 Flash 1M <1K 84.7 (72.0) 68.6 61.6 51.0 444 355 28.6
GPT-40 mini 128K <1K 84.8 (72.1) 67.7 582 442 326 206 13.7
Llama 3.1 8B 128K 1K 76.7 (65.2) 65.7 544 441 319 226 142

Table 3. NOLIMA benchmark results on the selected models. Following Hsieh et al. (2024), we report the effective length alongside the
claimed supported context length for each model. However, we define the effective length as the maximum length at which the score
remains above a threshold, set at 85% of the model’s base score (shown in parentheses). Scores exceeding this threshold are underlined.

Scores that are below 50% of the base score are shaded in red .

[1] NoLiMa: Long-Context Evaluation Beyond Literal Matching; A. Modarressi et al., 2025, https://arxiv.org/abs/2502.05167

Al & Software Development | Dr. Jurgen Muller | September 2025

Stanford's Software Engineering Productivity Insights [1]

Software Engineering Productivity Increases from Al Use
Orientative Guidelines

- +10-15% +0-10%

.;_:D Complex tasks require deeper ~ Constrained by outdated code &
2 human insight | intricate dependencies
; i
o
=
o
o
I |
c 2 +35-40% | +15-20%

o| Thesetasks are often repetitive ~ Legacy projects still benefit on

and well-defined | simpler tasks
Greenfield . . Brownfield
Project Maturity

Learning: Brownfield reduces productivity gains to 0-20%. Focus Al on less complex tasks

[1] Does Al Actually Boost Developer Productivity? Stanford University, Yegor Denisov-Blanch, 2025, https://www.youtube.com/watch?v=tbDDYKRFjhk

Al & Software Development | Dr. Jurgen Muller | September 2025 20

https://www.youtube.com/watch?v=tbDDYKRFjhk

Stanford's Software Engineering Productivity Insights [1]

Software Engineering Productivity Increases from Al Use
Orientative Guidelines Based on data from
100s of companies

+10-1509

-DC,Q (_5)_50/0 10-15 /0'

T Poortraining on legacy languages Seplelina i s LU LRIED,
) judgment
b
o
£
o
o
=
S 0-5%
" 2 Limited Al su :)rt for niche +20-25%

= PP Abundant data and model tuning

languages
Low | High

e.g. COBOL, Haskell, Elixir Language Popularity e.g. Python, Java

Learning: Migrate to more popular programming languages and frameworks

[1] Does Al Actually Boost Developer Productivity? Stanford University, Yegor Denisov-Blanch, 2025, https://www.youtube.com/watch?v=tbDDYKRFjhk

Al & Software Development | Dr. Jurgen Muller | September 2025 21

https://www.youtube.com/watch?v=tbDDYKRFjhk

Learnings Summary

e Thereis a net gain, as long as the amount of rework is not getting out of control
o Modularity is key to keep focus, regular refactoring helps to minimize complexity
e Be very specific in your requirements

o Al models try to make you happy and go for overly complex, fragile solutions

o Al models can adjust tests to make the build pass

e Treat Als like junior devs: don't trust their work, and verify

e Discard Al's proposals often (Al won't mind)

o Assign multiple Als in a way they do not interfere with each other

e The role of a developer will change massively: reviewer, architect, orchestrator

& the guardian of “what & why" while Al does the "how”

Al & Software Development | Dr. Jurgen Muller | September 2025 22

Sketchy Bar Chart Implementation Reinventing an Existing Library

// Al-generated "SketchyBarChart" - ~247 lines in full, condensed here
import { useEffect, useRef } from 'react’

export function SketchyBarChart({ 1, v, width=600, height=400 }) {
const canvasRef = useRef()

useEffect(() => {
const ctx = canvasRef.current.getContext('2d"')
ctx.clearRect(@, 0, width, height)

// Helpers with Math.random()
function sketchyLine(x1,y1,x2,y2,wobble=2) {
ctx.beginPath()
ctx.moveTo(x1+(Math.random()-0.5)*wobble, yl+(Math.random()-0.5)*wobble)
const segments = 10
for (let i=1; i<=segments; i++) {
const t = i/segments
const x = x1+(x2-x1)*t+(Math.random
const y = yl+(y2-yl)xt+(Math.random
ctx.lineTo(x,y¥

.5)*wobble
.5)*xwobble

()-0
()-e

+
ctx.stroke()

}

function sketchyRect(x,y,w,h,fill=false) {
const wobble = 3
ctx.beginPath()

ctx.moveTo(x+(Math.random()-0.5)*wobble, y+(Math.random()-0.5)%wobble)
ctx. lineTo(x+w+(Math. random()-0.5)*wobble, y+(Math.random()-0.5)*wobble)
ctx. lineTo(x+w+(Math. random()-0.5)*wobble, y+h+(Math.random()-0.5)*wobble)
ctx. lineTo(x+(Math.random()-0.5)*wobble, y+h+(Math.random()-0.5)*wobble)

ctx.closePath()
ctx.stroke()

if (fill) {
for (let i=0; i<w; i+=4) {
ctx.moveTo(x+i, y+h+(Math.random()-0.5)%2)
ctx. lineTo(x+i+h, y+(Math.random()-0.5)%2)
ctx.stroke()

b

// Draw axes with wobbly lines
sketchylLine(60,60,60,height-60)
sketchyLine(60,height-60,width-60,height-60)

// Draw bars with randomness
const max = Math.max(...v)
v.forEach((val,i) => {
const barHeight = (val/max)x*(height-120)
const x = 80+i*50, y = height-60-barHeight
sketchyRect(x,y,30,barHeight, true)
})ctx.fillText(l%i], x+15, height-40+Math.random()*5)

// Add random "dust" particles
for (let i=0; i<30; i++) {
ctx.arc(Math.random()*width, Math.random()xheight, Math.random()*2, @, Math.PIx*2)
; ctx. Fill()
Yo [Lvl)
return <canvas ref={canvasRef} width={width} height={height}/>

// Math.random() used 29 times! Reinventing RoughViz from scratch.

Al & Software Development | Dr. Jurgen Muller | September 2025

	Page 1
	How AI is Changing Software Development 💻

	Page 2
	Generative AI (GenAI) ❤️ Code

	Page 3
	Self-developing Software aka "Vibe Coding" 🎶

	Page 4
	My Learnings 📊

	Page 5
	1. 20× Efficiency Gains (at First) 🏔️

	Page 6
	Research on Software Development Efficiency Gains 💪

	Page 7
	Stanford's Software Engineering Productivity Insights 💸

	Page 8
	Stanford's Software Engineering Productivity Insights 📉

	Page 9
	2. AI will fill requirement gaps 💡

	Page 10
	3. AI "cheats" and goes for complex solutions 🔎

	Page 11
	Page 12
	Learnings from "Cheating" AI 🧙

	Page 13
	4. When using multiple AIs, they can collide 🚒 🚑

	Page 14
	Outlook 🚀

	Page 15
	Top 3 Actions for Management 👔

	Page 16
	Appendix for Deeper Insights

	Page 17
	Artificial Intelligence (AI) Evolution 🤖

	Page 18
	"Autonomous Driving" Levels 🚘

	Page 19
	Context Window Size

	Page 20
	Stanford's Software Engineering Productivity Insights [1]

	Page 21
	Stanford's Software Engineering Productivity Insights [1]

	Page 22
	Learnings Summary

	Page 23
	Sketchy Bar Chart Implementation Reinventing an Existing Library

