MSEECICINE

serenity in software production Operational Excellence in Software Production

Guiding Large-Scale Software Development Organizations
Through the Risky Terrain of Generative Al

May 15th, 2024, in Berlin

Executive Summit on the Evolution of Software Production

Software Production — Yesterday, Today, Tomorrow
...if software production would be like building a house...

Yesterday

« Manual process “stone by stone”
 Using small building blocks

(reuse via methods/procedures)
* Programming languages like C/CPP

- Specialized knowledge and expertise
about programming languages and
about algorithms & data structures
is required

@ 22.05.2024 2

Software Production - Yesterday, Today, Tomorrow
...if software production would be like building a house...

« Still manual process

« Using large building blocks

 Reuse from (open source)
frameworks and libraries

* Rich fundus of out-of-the-box
functionality

Examples: TCP network connection,
image processing algorithms, ...

- Specialized knowledge and expertise
about the frameworks/libraries
is required

22.05.2024 3

Software Production — Yesterday, Today, Tomorrow
...if software production would be like building a house...

Tomorrow AAAAA/

» Specify the house ——
* Print the house «—

* Reuse from building blueprints and
best-practices that the Al (LLM) has
learnt from world knowledge

= > Knowledge
how to talk with the GenAl tool
is required

@ 22.05.2024 4

Software Production — Yesterday, Today, Tomorrow

...if software production would be like building a house... o

Tomorrow YYVYYY

» Specify the house ——
* Print the house «—

At first sight:
No need for humans as
code producers anymore

@ 22.05.2024 5

Limitation of the Metaphor of “Building a House”
The metaphor holds only for software that addresses well-specifiable problems

Building a house addresses a

commodity (mass) problem that has
been solved very often in the past so
that the user requirements are clear:

« Clear requirements for a garage
 Clear requirements for a family house
« Clear requirements for an office building

Examples of software that addresses a
commodity (mass) problem:

« Static website for a company
» Webshop for a small business
* HR software for a SME company

B =5

Low-Code No-Code

Al will make the costly work of
3d-party integrators & agencies obsolete
22.05.2024

6

Most Software cannot be Specified Upfront
- Nearly all software dev orgs worldwide & cross-industry went from waterfall to agile

Most software does not address a commodity (often-solved) problem. Instead:

Software addresses a very specific,

unique business process of a company Producing such

software means a
journey with the

Software is the innovative part of a users:
physical product (car, loT device, ...
Finding out what
the users want
while producing

Software is the innovative product itself the software.

22.05.2024 7

Software is Never Finished “House Building” Metaphor

Inherent pressure to innovate software Never-ending series of small change
requests such as:

- » Family switch bedroom and bathroom.

-> Impact on water pipes and original architecture principles.

World turns,
| business processes &
opportunities change.

Over time, the original
purpose/architecture/function
of the house evolves significantly.

A Software must
continuously be
innovated, adapted,
extended.

Users expect continuous
- innovation. Otherwise, they
switch over to competitors.

Software Development as Iterative Process
Development cycles bring innovation to the users incrementally

SOFTWARE DEVELOPMENT PROCESS

REQUIREMENTS & TASK SCHEDULING &
SF?ECIFICATIONS PROGRESS TRACKING ARCHITECTURE & IMPLEMENTATION QUALITY ASSURANCE

USERS Q » %O USERS
‘h '
\J CHECKING BUILDING ~ EXECUTING Q
SOURCE CODE EXECUTABLE TESTS
= . . . 2 2
i = ho »» F e .g .. oL < oA b
4 i Ty
EEEEEEEEEEEE I: L ‘L
MGMT YTE‘d SOURCE CODE
WWWWWWWW DEVELOPERS REPOSITORIES

MGMT SYSTEM

EI < gathering user feedback for next iteration <

@ 22.05.2024 9

Software Development with GenAl-Assisted Code Production
Faster code production — an opportunity but also a risk

SOFTWARE DEVELOPMENT PROCESS

REQUIREMENTS & TASK SCHEDULING &
SPQEC|F|CAT|0N5 PROGRESS TRACKING ARCHITECTURE & IMPLEMENTATION QUALITY ASSURANCE
USERS Q 5
= =

REQUIREMENTS
sv5

nnnnnnnn

Conventional Coding GenAl-assisted Coding
x\\ . > Screwdriver - Screwrobot

m » ?\\{3

\ 22.05.2024 10

Todays Studies about Productivity Boost with GenAl Code Production

Attention — there is a bias

Typical study results: Bias:
» Less expert knowledge » Hackathon-like tasks:
needed to complete the task » Building something from scratch
« Faster task completion (up to 10x) « Building a solution for a well-specified problem

 Specify the house —
* Printthe house <+«—

@ 22052024 11

See. Towards Operational Excellence
Understand. in Software Production

Improve.
ClO/CTO
— M

PROCESS MATURITY
& COMPLIANCE

EFFICIENCY NO KNOWLEDGE
LOCK-IN

360°
EXCELLENT
. SOFTWARE - -
: PRODUCTION
—-DOOOO® -
Code Landscape ﬂﬂﬂﬂﬂ@ﬂﬂﬂﬂ
. NO TECHNICAL DEBT

TIME-TO-DELIVERY

Mseerene Al/Analytics-based measuring

of development excellence

22.05.2024 12

Efficiency in Software Production
How much developer time is left for creating value-add?

22% - Inefficiency due to

Total Loss: o .
developers hit into low-quality code

31% - Inefficiency
INPUT due to defect fixing
Developer Time

(100%)

Remaining after
TechDebt Loss
(78%)

Below-theradar Activities (7%)
Adhoc Work ltems (8%)

I 15% Unsteered Work

Remaining as
Investment
(47%)

This LOSS
can be converted
into value-add
creation

Only 32% of developer time é

is used for implementing
business topics!

@ 22052024 13

Efficiency in Software Production
Actionable Insights: Seerene identifies the hotspots in the code architecture

I 22% Hitinto low-quality code . Code unitthat consumes high amount
Drill Down of developer time for defect fixing

| 31% Defect fixing |

I 15% Unsteered Work

LINS 4>
Srimd

it L7

Source code of the

@ . . . 22052024 14
software visualized as city

We are Building up a Benchmark for Software Production Excellence
Preliminary observations of impact of GenAl-assisted code production

Logic Throughput
30
25

LE
..............
.

20 e =

15
10

...........
...........

5

0
24.01.2023 15.03.2023 04.05.2023 23.06.2023 12.08.2023 01.10.2023 20.11.2023 09.01.2024 28.02.2024 18.04.2024

Start of using GenAl tool

Preliminary observations:
- approx. 2-3 times more code (logic statements) produced per developer per week

@ 22.05.2024 15

Faster Code Production Requires Better Test Automation

Quality assurance must be prepared and must keep up with the faster production speed

30
25
20
15
10

5

0
24.01.2023

60
50
40
30
20
10

0
24.01.2023

Logic Throughput

15.03.2023 04.05.2023 23.06.2023 12.08.2023 01.10.2023 20.11.2023 09.01.2024

% Coding Effort for Defect Fixing

15.03.2023 04.05.2023 23.06.2023 12.08.2023 01.10.2023 20.11.2023 09.01.2024

Preliminary observations:
- Defect fixing efforts go up by approx. factor 1.5

28.02.2024

28.02.2024

18.04.2024

18.04.2024

22.05.2024

16

Maintainability Risk: GenAl-Tools Tend to Create Nested Code

Nested code (if, if, if, else, if, if, ...) is difficult to understand and also to secure by tests

Logic Throughput
30
25

20 B T

15
10

5

0
24.01.2023 15.03.2023 04.05.2023 23.06.2023 12.08.2023 01.10.2023 20.11.2023 09.01.2024 28.02.2024

Complexity Pollution

[y
o

24201.2023 15.03.2023 04.05.2023 23.06.2023 12.08.2023 01.10.26'2_3 20.11.2023 09.01.2024 28.02.2024

S hd A Fon s o

'
[ary

Preliminary observations:
@ - Drastic increase of “code lines in deep nesting level” per developer per week

18.04.2024

18.04.2024

22.05.2024

17

Summary
GenAl-based Code Production: Opportunity for boosting productivity but it also bears risk

« GenAl code production tools can drastically boost the speed of software development
« However, faster code production will backfire
- ..if quality assurance (test automation, code review processes, ..) is not equally scaled up

- ..if developers don’t have the necessarily high skillset to use these tools
They must be able to assessthe effects of the GenAl-based code proposals on code quality and architecture.

CIO/CTO
Recommendation . @

* Providing your developers with GenAl tools

+ BUT also introduce measurement and governance
across your organization

— Measure development excellence
per business unit, per department, per team

— Proactively identify org areas that need upskilling

—OOOOO® -
And: Contact me if you wantto Code Landscape ﬁ] ﬂ ﬂ @ ﬂ ﬂ @ ﬂ ﬂ

participate in our benchmark initiative

Al/Analytics-based measuring
@ seerene of development excellence 22052024

18

Dr. Johannes Bohnet

Thank YOU!) '; johannes.bohnet@seerene.com

WwWw.seerene.com

inJ>C

Scalable Software Excellence 22.05.2024 19

https://www.seerene.com/de/
https://de.linkedin.com/company/seerene
https://twitter.com/seerene?lang=en

	Slide 1
	Slide 2: Software Production – Yesterday, Today, Tomorrow
	Slide 3: Software Production – Yesterday, Today, Tomorrow
	Slide 4: Software Production – Yesterday, Today, Tomorrow
	Slide 5: Software Production – Yesterday, Today, Tomorrow
	Slide 6: Limitation of the Metaphor of “Building a House”
	Slide 7: Most Software cannot be Specified Upfront
	Slide 8: Software is Never Finished
	Slide 9: Software Development as Iterative Process
	Slide 10: Software Development with GenAI-Assisted Code Production
	Slide 11: Todays Studies about Productivity Boost with GenAI Code Production
	Slide 12: Towards Operational Excellence in Software Production
	Slide 13: Efficiency in Software Production
	Slide 14: Efficiency in Software Production
	Slide 15: We are Building up a Benchmark for Software Production Excellence
	Slide 16: Faster Code Production Requires Better Test Automation
	Slide 17: Maintainability Risk: GenAI-Tools Tend to Create Nested Code
	Slide 18: Summary
	Slide 19

