
Guiding Large-Scale Software Development Organizations
Through the Risky Terrain of Generative AI

Leveraging the Power of
AI-Based Code Production

Dr. Johannes Bohnet
Founder & CEO of Seerene

May 15th, 2024, in Berlin

Executive Summit on the Evolution of Software Production

SEE. UNDERSTAND. IMPROVE.
Operational Excellence in Software Production

…if software production would be like building a house…

Software Production – Yesterday, Today, Tomorrow

22.05.2024 2

Yesterday

• Manual process “stone by stone”
• Using small building blocks

(reuse via methods/procedures)
• Programming languages like C/CPP

→Specialized knowledge and expertise
about programming languages and
about algorithms & data structures
is required

…if software production would be like building a house…

Software Production – Yesterday, Today, Tomorrow

22.05.2024 3

Today
• Still manual process
• Using large building blocks
• Reuse from (open source)

frameworks and libraries
• Rich fundus of out-of-the-box

functionality
Examples: TCP network connection,
image processing algorithms, …

→ Specialized knowledge and expertise
about the frameworks/libraries
is required

…if software production would be like building a house…

Software Production – Yesterday, Today, Tomorrow

22.05.2024 4

Tomorrow
(has started already today)

• Specify the house
• Print the house

• Reuse from building blueprints and
best-practices that the AI (LLM) has
learnt from world knowledge

→ Knowledge
how to talk with the GenAI tool
is required

…if software production would be like building a house…

Software Production – Yesterday, Today, Tomorrow

22.05.2024 5

• Specify the house
• Print the house

At first sight:
No need for humans as
code producers anymore

Tomorrow
(has started already today)

The metaphor holds only for software that addresses well-specifiable problems

Limitation of the Metaphor of “Building a House”

22.05.2024 6

Building a house addresses a
commodity (mass) problem that has
been solved very often in the past so
that the user requirements are clear:

• Clear requirements for a garage
• Clear requirements for a family house
• Clear requirements for an office building
• …

Examples of software that addresses a
commodity (mass) problem:

• Static website for a company
• Webshop for a small business
• HR software for a SME company
• …

AI will make the costly work of
3rd-party integrators & agencies obsolete

→ Nearly all software dev orgs worldwide & cross-industry went from waterfall to agile

Most Software cannot be Specified Upfront

22.05.2024 7

Most software does not address a commodity (often-solved) problem. Instead:

Software addresses a very specific,
unique business process of a company

Software is the innovative part of a
physical product (car, IoT device, …)

Software is the innovative product itself

Producing such
software means a
journey with the

users:

Finding out what
the users want

while producing
the software.

Inherent pressure to innovate software

Software is Never Finished

22.05.2024 8

World turns,
business processes &
opportunities change.

Users expect continuous
innovation. Otherwise, they
switch over to competitors.

Software must
continuously be

innovated, adapted,
extended.

“House Building” Metaphor

Never-ending series of small change
requests such as:

• Family switch bedroom and bathroom.
→ Impact on water pipes and original architecture principles.

Over time, the original
purpose/architecture/function
of the house evolves significantly.

Development cycles bring innovation to the users incrementally

Software Development as Iterative Process

22.05.2024 9

 gathering user feedback for next iteration 

Faster code production – an opportunity but also a risk

Software Development with GenAI-Assisted Code Production

22.05.2024 10

“House Building” Metaphor

Conventional Coding
→ Screwdriver

GenAI-assisted Coding
→ Screwrobot

Attention – there is a bias

Todays Studies about Productivity Boost with GenAI Code Production

22.05.2024 11

• Specify the house
• Print the house

Typical study results:
• Less expert knowledge

needed to complete the task
• Faster task completion (up to 10x)

Bias:
• Hackathon-like tasks:
• Building something from scratch
• Building a solution for a well-specified problem

12

See.
 Understand.
 Improve.

Towards Operational Excellence
in Software Production

22.05.2024

AI/Analytics-based measuring
of development excellence

CEO

CIO/CTO

Head of Software Development

Teams …

Code Landscape …

EFFICIENCY

How much developer time is left for creating value-add?

22.05.2024

22% - Inefficiency due to
developers hit into low-quality code

31% - Inefficiency
due to defect fixing

Only 32% of developer time
is used for implementing
business topics!

15% Unsteered Work
• Below-the-radar Activities (7%)

• Adhoc Work Items (8%)

INPUT
Developer Time
(100%) Remaining after

TechDebt Loss
(78%)

Remaining as
Investment

(47%)

68%

Efficiency in Software Production

13

This LOSS
can be converted

into value-add
creation

Total Loss:

Actionable Insights: Seerene identifies the hotspots in the code architecture

22.05.2024

Efficiency in Software Production

14
Source code of the

software visualized as city

Code unit that consumes high amount
of developer time for defect fixing

Drill Down

Preliminary observations of impact of GenAI-assisted code production

We are Building up a Benchmark for Software Production Excellence

22.05.2024 15

Start of using GenAI tool

Preliminary observations:
→ approx. 2-3 times more code (logic statements) produced per developer per week

Quality assurance must be prepared and must keep up with the faster production speed

Faster Code Production Requires Better Test Automation

22.05.2024 16

Preliminary observations:
→ Defect fixing efforts go up by approx. factor 1.5

Nested code (if, if, if, else, if, if, …) is difficult to understand and also to secure by tests

Maintainability Risk: GenAI-Tools Tend to Create Nested Code

22.05.2024 17

Preliminary observations:
→Drastic increase of “code lines in deep nesting level” per developer per week

• GenAI code production tools can drastically boost the speed of software development

• However, faster code production will backfire

• …if quality assurance (test automation, code review processes, …) is not equally scaled up

• …if developers don’t have the necessarily high skillset to use these tools
They must be able to assess the effects of the GenAI-based code proposals on code quality and architecture.

Recommendation

• Providing your developers with GenAI tools

• BUT also introduce measurement and governance
across your organization

− Measure development excellence
per business unit, per department, per team

− Proactively identify org areas that need upskilling

And: Contact me if you want to

participate in our benchmark initiative

22.05.2024 18

GenAI-based Code Production: Opportunity for boosting productivity but it also bears risk

Summary

Thank You!
Dr. Johannes Bohnet

johannes.bohnet@seerene.com

www.seerene.com

22.05.2024Scalable Software Excellence 19

https://www.seerene.com/de/
https://de.linkedin.com/company/seerene
https://twitter.com/seerene?lang=en

	Slide 1
	Slide 2: Software Production – Yesterday, Today, Tomorrow
	Slide 3: Software Production – Yesterday, Today, Tomorrow
	Slide 4: Software Production – Yesterday, Today, Tomorrow
	Slide 5: Software Production – Yesterday, Today, Tomorrow
	Slide 6: Limitation of the Metaphor of “Building a House”
	Slide 7: Most Software cannot be Specified Upfront
	Slide 8: Software is Never Finished
	Slide 9: Software Development as Iterative Process
	Slide 10: Software Development with GenAI-Assisted Code Production
	Slide 11: Todays Studies about Productivity Boost with GenAI Code Production
	Slide 12: Towards Operational Excellence in Software Production
	Slide 13: Efficiency in Software Production
	Slide 14: Efficiency in Software Production
	Slide 15: We are Building up a Benchmark for Software Production Excellence
	Slide 16: Faster Code Production Requires Better Test Automation
	Slide 17: Maintainability Risk: GenAI-Tools Tend to Create Nested Code
	Slide 18: Summary
	Slide 19

