The End of
Programming
as We Know It

Jirgen Dollner

The End of Programming as We Know It

How Generative Al is Transforming Software Engineering

Jiirgen Dollner

Hasso-Plattner-Institute for Digital Engineering

November 7, 2024



Introduction

The End of
Programming
as We Know It

Jiirgen Dollner

m Generative Al is fundamentally changing software
development and signaling the end of programming and
software development as we know it.



Introduction

The End of
Programming
as We Know It

Jiirgen Déllner

Figure: Democratization of knowledge: The Gutenberg printing press
revolutionized access to information by enabling the mass production
of books. Generative Al enables low-threshold code generation and
therefore radically reopens software development to humans and
machines.



The Landscape of Software Engineering

The End of
Programming
as We Know It

Jiirgen Déllner Practices
m Human-based analysis, design, implementation, and
deployment tools and methods

Ingredients
m Human logic and problem-solving, human problem
understanding, predominant procedural thinking, thinking
in human dimensions

Limitations
m Limited scalability, proliferation of artifacts, increasing
complexity of legacy code, time-consuming and
non-deterministic development processes (budget, time), ...



The Landscape of Software Engineering

i B 61 Software Crisis
Programming
as We Know It Setting the Scene
I¥s 1968 and there are 10,000 computers in Europe. This number is set to double
Jiirgen Déllner every year. A group of 40 academics gather for the Garmisch conference. NATO

sponsors it so they send a few people along to listen and learn

"Photograph from the conference.

Some of the names we may recognise today are Edsger Dijkstra, CAR Hoare, Alan
Perlis, Peter Naur, and Niklaus Wirth. The attendees are largely from a scientific
background, and rotate between industry jobs and academia. They typically work on
systems such as operating systems, compilers, and programming languages.

Figure: 1968: The NATO Software Engineering Conference coined
the terms software engineering and software crisis recognizing the
complexity and difficulty in software development (isthisit.nz).



The Traditional Landscape of Software Engineering

The End of
Programming
as We Know It

Software Crisis

Jiirgen Déllner

How the customer
explained it

How the Project
Leader understood it

How the Analyst
designed it

How the Programmer How the Business
wrote it Consultart described it

How the project How the customer

was documented

\What operations
installed was hilled

How it was supported

What the customer
really needed




The Rise of Generative Al in Software Development

The End of
Programming

as We Know It Programming Languages are Languages

Jirgen Dollner

m Syntax and semantics are strictly defined
m Predictable patters are ideal for Al modeling
m Coding standards and conventions enhance learning

LLMs Trained on Code

m Exposure to vast codebases allows LLMs to learn and
understand programmed artefacts

m Complementary information steams from topics over
proramming (e.g., stackoverflow, ticket systems)

Synergy
m Structured data aligns with LLM sequence modeling
m Al models learn from both code and natural language,
enhancing versatility



The End of
Programming
as We Know It

Jiirgen Dollner

The Rise

of Generative Al in Software

On the Naturalness of Software

Abram Hindle, Earl Barr, Mark Gabel, Zhendong Su, Prem Devanbu
devanbu@cs.ucdavis.edu

Unpublished version of ICSE 2012 paper, with expanded future work section
Enjoy! Comments Welcome.

Abstract—Natural languages like English are rich, complex,
and powerful. The highly creative and graceful use of languages
like English and Tamil, by masters like Shakespeare and Avvai-
yar, can certainly delight and inspire. But in practice, given cog-
nitive constraints and the exigencies of daily life, most human
utterances are far simpler and much more repetitive and pre-
dictable. In fact, these utterances can be very usefully modeled
using modern statistical methods. This fact has led to the phe-
nomenal success of stati

what people actually write or say. In the 1980’s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple lan-
guages!, along with the computational muscle (CPU speed,
primary and secondary storage) to estimate robust statistical
models over very large data sets has led to stunning progress

to s speed ch
natural language translation, question-answering, and text min-
ing and comprehension.

‘We begin with the conjecwre that most software is also natu-
ral, in the sense that It is created hy hllmans at work, with all
the and li d thus, like natu-
ral language, it is also likely to be repetitive and predictable. We
then proceed to ask whether a) code can be usefully modeled by
statistical language models and b) such models can be leveraged
to support software engineers. Using the widely adopted n-gram
model, we provide empirical evidence supportive of a positive
answer to both these questions. We show that code is also very
repetitive, and in fact even more so than natural languages. As
an example use of the model, we have developed a simple code
completion engine for Java that, despite its simplicity, already
improves Eclipse’s completion capability. We conclude the pa-
per by laying out a vision for future research in this area.

Keywords-language models; n-gram; nature language process-
ing; code completion; code suggestion

and widely ilable practical applications, such as statisti-
cal translation used by translate.google . com.> We argue
that an essential fact underlying this modern, exciting phase
of NLP s this: natural language may be complex and admit a
great wealth of expression, but what people write and say is
largely regular and predictable.

Our central hypothesis is that the same argument applies to
software:

Programming languages, in theory, are complex, flex-
ible and powerful, but the programs that real people
actually write are mostly simple and rather repetitive,
and thus they have usefully predictable staistical proper-
ties that can be captured in isti models
and leveraged for software engineering tasks.

Development



Transforming Programming Practices

The End of
Programming
as We Know It

Jirgen Dollner

From Coding to Solution Design

m Software developers spend a large part of time on design,
coding, debugging, redesign, and testing code as well as on
maintenance, refactoring, etc.

m Generative Al automates large parts of these activities

m Generative Al shifts focus on specifying what a solution
should do, not how to implement it

m "Prompts”, for example, are key ingredients of generative
Al approaches



Transforming Programming Practices

The End of
Programming
as We Know It

Jirgen Dollner

Enhanced Human-Machine Collaboration
m Symbiosis between human insights and Al's speed and
precision
m Generated code with high degree of quality, following best
practices and reducing the likelihood of errors
m The time required for coding could probably be completely
neglected in the future



Transforming Programming Practices

The End of
Programming
as We Know It

Jirgen Dollner

Software On-Demand

m If software can be automatically generated within a
controlled environment for a given context, it can be
generated on demand, i.e., just-in-time

m For example, the coding, testing, deployment and
execution of software is only performed once, exactly when
a service receives a specific request

m It will be no longer necessary to develop a general,
all-encompassing software system in advance when a
specific software system can be derived at any time

m Example: Exploratory data analysis by ChatGPT



Capabilities Beyond Human Programmers

The End of
Programming
as We Know It

Jirgen Dollner Speed and Efficiency
m Rapid code generation and automated testing

Handling Complexity
m Managing large-scale frameworks and intricate algorithms

Continuous Learning
m Al models improve over time with more data

Genetic Programming

m Al models can generated an endless variety of codings to
find an optimal solution



Consequences

The End of
Programming
as We Know It

Jiirgen Dllner Redefining Roles in Software Development
m Software engineers as strategists and supervisors
m Correctness and reliability checks as central tasks

Decline of Manual Coding
m Al taking over coding — from code pilots to fully automatic
code generation
m Changes to the tool sets of developers

Evolving Skill Sets
m Need for Al oversight and system design expertise
m Ethics becomes a concern, avoiding biases and maintaining
code integrity



The End of
Programming
as We Know It

Jirgen Dollner

Consequences

Al-Adapted Programming Techniques and Tools

High-level programming languages (e.g., Python, Java,
C++) are created with syntax and semantics that are
easier for humans to read, write, and understand
Generative Al could leverage patterns and structures that
are efficient for Al algorithms but not necessarily intuitive
for humans, i.e., optimize for computational efficiency
rather than for human comprehension

Generative Al will potentially generate optimized machine
code directly, bypassing the need for intermediate
high-level languages

Generative Al could use self-modifying code, i.e., code that
can alter its own instructions during execution to adapt to
changing conditions or optimize performance

Generative Al could use non-instructional code
representations, e.g., graphs, or stateless approaches (e.g.,
functional programming).



Consequences

The End of
Programming
as We Know It

Jirgen Dollner

Example: Ultimate RISC
m What is the minimum number of instructions a CPU needs
in order to be universal? — A single instruction.
m Example: "Subtract, Test, and Jump" (STJ) RISC
m STJ(x,y,2) & x := x - y; if x <= 0 then goto z;



Consequences

The End of
Programming
as We Know It

Jirgen Dollner

System Architecture and System Modularization

m High-level system architecture and interfaces (e.g., APIs)
will be subject of explicit and strategic human design

m One kind of module, modules below a certain complexity
threshold, can be generated automatically based on
high-level specifications and corresponding test data

m Another kind of module, having a clearly defined
functionality, embeds an LLM (or an MLLM), that is,
these modules will become trained black-boxes



The End of
Programming
as We Know It

Jiirgen Déllner

Attention!

SHOULD WE BE
CONCERNED
ABOUT THAT ?

e td

THAT'S BECAUSE
IT'S FAR AUAY.
WHEN \T'S CLOSE,
\T WILL BE LARGER.

/

WRHO'S PARING
YOU TO SAY TH\S?

\

WE DON'T ‘
HAVE
CURRENCY.

poorlydrawnlines.com



Last Slide

The End of
Programming
as We Know It

Jirgen Dollner

Thank You for Your Attention.

m Contact Information:

m Email: doellner@hpi.de
m Website: https://www.hpi.de/doellner


mailto:doellner@hpi.de
https://www.hpi.de/doellner

