
The End of
Programming
as We Know It

Jürgen Döllner

The End of Programming as We Know It
How Generative AI is Transforming Software Engineering

Jürgen Döllner

Hasso-Plattner-Institute for Digital Engineering

November 7, 2024



The End of
Programming
as We Know It

Jürgen Döllner

Introduction

Generative AI is fundamentally changing software
development and signaling the end of programming and
software development as we know it.



The End of
Programming
as We Know It

Jürgen Döllner

Introduction

Figure: Democratization of knowledge: The Gutenberg printing press
revolutionized access to information by enabling the mass production
of books. Generative AI enables low-threshold code generation and
therefore radically reopens software development to humans and
machines.



The End of
Programming
as We Know It

Jürgen Döllner

The Landscape of Software Engineering

Practices
Human-based analysis, design, implementation, and
deployment tools and methods

Ingredients
Human logic and problem-solving, human problem
understanding, predominant procedural thinking, thinking
in human dimensions

Limitations
Limited scalability, proliferation of artifacts, increasing
complexity of legacy code, time-consuming and
non-deterministic development processes (budget, time), ...



The End of
Programming
as We Know It

Jürgen Döllner

The Landscape of Software Engineering

Software Crisis

Figure: 1968: The NATO Software Engineering Conference coined
the terms software engineering and software crisis recognizing the
complexity and difficulty in software development (isthisit.nz).



The End of
Programming
as We Know It

Jürgen Döllner

The Traditional Landscape of Software Engineering

Software Crisis



The End of
Programming
as We Know It

Jürgen Döllner

The Rise of Generative AI in Software Development

Programming Languages are Languages
Syntax and semantics are strictly defined
Predictable patters are ideal for AI modeling
Coding standards and conventions enhance learning

LLMs Trained on Code
Exposure to vast codebases allows LLMs to learn and
understand programmed artefacts
Complementary information steams from topics over
proramming (e.g., stackoverflow, ticket systems)

Synergy
Structured data aligns with LLM sequence modeling
AI models learn from both code and natural language,
enhancing versatility



The End of
Programming
as We Know It

Jürgen Döllner

The Rise of Generative AI in Software Development



The End of
Programming
as We Know It

Jürgen Döllner

Transforming Programming Practices

From Coding to Solution Design
Software developers spend a large part of time on design,
coding, debugging, redesign, and testing code as well as on
maintenance, refactoring, etc.
Generative AI automates large parts of these activities
Generative AI shifts focus on specifying what a solution
should do, not how to implement it
”Prompts”, for example, are key ingredients of generative
AI approaches



The End of
Programming
as We Know It

Jürgen Döllner

Transforming Programming Practices

Enhanced Human-Machine Collaboration
Symbiosis between human insights and AI’s speed and
precision
Generated code with high degree of quality, following best
practices and reducing the likelihood of errors
The time required for coding could probably be completely
neglected in the future



The End of
Programming
as We Know It

Jürgen Döllner

Transforming Programming Practices

Software On-Demand
If software can be automatically generated within a
controlled environment for a given context, it can be
generated on demand, i.e., just-in-time
For example, the coding, testing, deployment and
execution of software is only performed once, exactly when
a service receives a specific request
It will be no longer necessary to develop a general,
all-encompassing software system in advance when a
specific software system can be derived at any time
Example: Exploratory data analysis by ChatGPT



The End of
Programming
as We Know It

Jürgen Döllner

Capabilities Beyond Human Programmers

Speed and Efficiency
Rapid code generation and automated testing

Handling Complexity
Managing large-scale frameworks and intricate algorithms

Continuous Learning
AI models improve over time with more data

Genetic Programming
AI models can generated an endless variety of codings to
find an optimal solution



The End of
Programming
as We Know It

Jürgen Döllner

Consequences

Redefining Roles in Software Development
Software engineers as strategists and supervisors
Correctness and reliability checks as central tasks

Decline of Manual Coding
AI taking over coding – from code pilots to fully automatic
code generation
Changes to the tool sets of developers

Evolving Skill Sets
Need for AI oversight and system design expertise
Ethics becomes a concern, avoiding biases and maintaining
code integrity



The End of
Programming
as We Know It

Jürgen Döllner

Consequences

AI-Adapted Programming Techniques and Tools
High-level programming languages (e.g., Python, Java,
C++) are created with syntax and semantics that are
easier for humans to read, write, and understand
Generative AI could leverage patterns and structures that
are efficient for AI algorithms but not necessarily intuitive
for humans, i.e., optimize for computational efficiency
rather than for human comprehension
Generative AI will potentially generate optimized machine
code directly, bypassing the need for intermediate
high-level languages
Generative AI could use self-modifying code, i.e., code that
can alter its own instructions during execution to adapt to
changing conditions or optimize performance
Generative AI could use non-instructional code
representations, e.g., graphs, or stateless approaches (e.g.,
functional programming).



The End of
Programming
as We Know It

Jürgen Döllner

Consequences

Example: Ultimate RISC
What is the minimum number of instructions a CPU needs
in order to be universal? – A single instruction.
Example: ”Subtract, Test, and Jump” (STJ) RISC
STJ(x,y,z) ⇔ x := x - y; if x <= 0 then goto z;



The End of
Programming
as We Know It

Jürgen Döllner

Consequences

System Architecture and System Modularization
High-level system architecture and interfaces (e.g., APIs)
will be subject of explicit and strategic human design
One kind of module, modules below a certain complexity
threshold, can be generated automatically based on
high-level specifications and corresponding test data
Another kind of module, having a clearly defined
functionality, embeds an LLM (or an MLLM), that is,
these modules will become trained black-boxes



The End of
Programming
as We Know It

Jürgen Döllner

Attention!



The End of
Programming
as We Know It

Jürgen Döllner

Last Slide

Thank You for Your Attention.

Contact Information:
Email: doellner@hpi.de
Website: https://www.hpi.de/doellner

mailto:doellner@hpi.de
https://www.hpi.de/doellner

