
A P R A C T I C A L A P P R O A C H

Increasing Productivity in a highly
dynamic Software World
April 3, 2023

Dr. Johannes Bohnet, CEO & Founder Seerene GmbH
Alexander Hofmann, CTO MaibornWolff GmbH

View inside the Software Factory1

C A P A C I T Y V E R S U S N E E D S

The world wants more Software than the world can build

A L O T O F P O T E N T I A L F O R M O R E P R O D U C T I V I T Y

Why so little software for so much money?

INPUT
Developer Time

100%

Loss due to Work in
Low-Quality Code

Loss due to
Defect Fixing Unsteered Work

Below-the-Radar Activities (10%)
Adhoc Work Items (11%)

Remaining for
Business Value Creation

25%
34%

21%
20%

3 Superpowers for more Productivity2

B Y 2 0 3 0 : I N C R E A S E P R O D U C T I V I T Y B Y A F A C T O R O F 5

Superpower 1: Near-/Offshore Talents

Demographic change

Sourcing

New talent markets (Africa)

Distributed work ... new normal

Specialization

B Y 2 0 3 0 : I N C R E A S E P R O D U C T I V I T Y B Y A F A C T O R O F 5

Superpower 2: Artificial Intelligence

Software engineers today
factor 10 faster than in 1996

New kid in town … Large Language Models
(ChatGPT, Copilot X, etc.)
Revolution of Software development

Similar productivity boost with open
source (start 1998) ... today 80:20
from standard:individual

B Y 2 0 3 0 : I N C R E A S E P R O D U C T I V I T Y B Y A F A C T O R O F 5

Superpower 3: Technology

• CNCF map -> Open Source
(Cloud Native Computing Foundation)

• Public cloud infrastructures

• Virtual Reality / Metaverse

• LowCode platforms

• Quantum Computing

Next Level
Software Engineering

Next Level Software Engineering3

M A K I N G U S E O F D A T A I N T H E D E V E L O P M E N T I N F R A S T R U C T U R E

Measuring Efficiency

INPUT
Developer Time

100%

Loss due to Work in
Low-Quality Code

Loss due to
Defect Fixing Unsteered Work

Below-the-Radar Activities (10%)
Adhoc Work Items (11%)

Remaining for
Business Value Creation

25%
34%

21%
20%

I N E F F I C I E N C Y E A T S U P B U D G E T S

Finding and fixing Code that unnecessarily
consumes Developer Time

Code Landscape visualized
as a “Code City”

Navigating to the
Root Cause of the Problem

25%
34%

21%
20%

A N A L Y T I C S - D R I V E N C O N T I N U O U S I M P R O V E M E N T C Y C L E

Key is to close the loop and measure the impact
of improvement activities

St
ra

te
gi

c
O

pe
ra

tio
na

l

Measure Efficiency

Reveal
Root Causes

Define
(small and focused)

Improvements

Measure
Impact of

Improvements

Execute
Improvements

Software

25%
34%

21%
20%

Cluster of
software systems

Most suffering
software system Hotspots in the

code architecture

bad  Defect Fixing Ratio → good

Efficiency
Business Unit / Department

D I G I T A L B O A R D R O O M – B U I L D I N G T O P - N O T C H S O F T W A R E O R G A N I Z A T I O N S

From high-level Executive Views to Details in the Code

D I G I T A L B O A R D R O O M – B U I L D I N G T O P - N O T C H S O F T W A R E O R G A N I Z A T I O N S

From high-level Executive Views to Details in the Code

Cluster of
software systems

in department

Most suffering
system: FluxCore

Drill
Down

Defect fixing hotspots
in code architecture

bad  Defect Fixing Ratio → good

Efficiency – Department Level

How efficient is your
software factory?

Thanks for Your Attention

	Standard
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

